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Abstract. Photon-based quantum information schemes have increased the need
for light sources that produce individual photons, with many such schemes
relying on optical parametric down-conversion (PDC). Practical realizations of
this technology require that the PDC light be collected into a single spatial mode
defined by an optical fibre. In this paper, we present two possible models to
describe single-mode fibres coupling with PDC light fields in a non-collinear
configuration, leading to two different results. This is a general approach,
including factors such as crystal length and walk-off, non-collinear phase-
matching and also transverse pump field distribution. We propose an experimental
test to distinguish between the two models. The goal is to help clarify open issues,
such as how to extend the theory beyond the simplest experimental arrangements
and, more importantly, to suggest ways to improve the collection efficiency.
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1. Introduction

The advent of photon-based quantum cryptography, communication and computation schemes
[1]–[10] has increased the need for light sources that produce individual photons [11]. An
ideal single-photon source would produce completely characterized single photons on demand.
Since all the currently available sources fall significantly short of this ideal (i.e. they do not
produce photons 100% of the time and/or they do not produce only single photons), much
effort has been focused on creating improved approximations of single-photon-on-demand
sources (SPOD) [12]–[19]. Some of these schemes [17, 19] rely on optical parametric down-
conversion (PDC), because it produces photons two at a time, allowing one photon to herald
the existence of the other. In a previous work, we proposed one such scheme where a
multiplexed PDC array is used to make an improved SPOD source having increased probability
of single-photon emission, while suppressing the probability of multi-photon generation [19].
Most PDC-based schemes (including ours) require that the PDC output be collected into a
single spatial mode defined by an optical fibre. For these PDC schemes to reliably produce
single photons, it is essential that the optical collection system efficiently gathers and detects
the herald photon and, with minimal loss, sends its partner to the output of the system. In
addition to SPOD applications, it is also important to understand collection efficiency for other
applications such as PDC-based metrological applications, which are very sensitive to collection
efficiency [20].

Various theoretical models have been developed to predict how the collection efficiency of
PDC light in a ‘two-photon single mode’ can be improved [21]–[24], and, in some cases, these
models have been used to improve coupling efficiency. In particular, it has been shown that the
size of the pump beam focus affects the shape of the PDC output [21] and, hence, the coupling
efficiency of the PDC light with a given spatial mode. In addition, a more detailed work [23]
recently showed how increasing the crystal length and walk-off decreases the coupling efficiency
for a pulsed broadband pump. However, in these works, attempts to increase the single-mode
fibre coupling efficiency were limited to a tightly focused pump beam and a thin crystal, which
reduces the overall source brightness. This last restriction is forced on the calculations because
the approximations used for the phase-mismatch function in terms of longitudinal wavevector
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mismatch are not valid in the long-crystal case. Moreover, these works deal only with either type
I or II phase-matching conditions; they do not include the non-collinearity and walk-off of the
emitted photons and the pump beam. The work done to date does, however, give some partial
guidance for increasing the coupling efficiency in certain experimental situations. For instance,
the most practical results to date generally show that the collection efficiency for long crystals
is optimized for properly matched large pump and collection waists. However, the maximum
efficiency is limited by walk-off in type II phase-matching [23] and by excessive crystal length
in type I phase-matching [24]. Furthermore, the approximations done in the previous theory
limited the validity of the results to a narrow range of crystal lengths and collection/pump
waists.

A more general approach to the problem is needed in order to clarify open issues such as
those mentioned above (i.e. overcoming the calculation limits and extending the theory) and
to determine how we can best test the collection efficiency model. Here, we present a model to
describe the coupling of the PDC source with single spatial modes. This method uses a field-based
model to describe the coupling of the PDC field with the single-mode fibre-defined fields, as has
been partially presented in other works along with some suggestive supporting data [23, 24]. We
also present an alternative intensity-based model, where an intensity projector operator represents
the effect of a spatial filtering, as suggested in [21, 25]. We calculate the collection efficiencies
using both the methods for both type I and II PDC output and two single modes defined by optical
fibres, accounting for effects due to the crystal length, walk-off of extraordinary fields, non-
collinear phase-matching and pump transverse-field distribution. We then analytically evaluate
both efficiencies, assuming negligible second-order terms in the transverse component of the
wavevectors. The intensity-based approach exhibits counter-intuitive results, even in the thin
crystal limit and may be more suitable for multi-mode collection. We propose an experimental
test to distinguish between the two.

The work is organized as follows: in section 2, we define the field- and intensity-based
collection efficiencies for a PDC field. In sections 3 and 4, we explicitly calculate the two
efficiencies in terms of the parameters of the physical systems. In section 5, we compare the
predictions of the two models. The appendix contains the geometrical analysis of the wavevector
displacement, resulting from walk-off and non-collinear phase-matching.

2. Definition of PDC field- and intensity-based collection efficiencies

To determine the collection efficiency between the parametric down-conversion output and two
single spatial modes (defined in our set-up by single-mode optical fibres and lenses as shown
in figure 1), we use two very different approaches. In the first, we calculate the overlap of the
PDC field with the field modes selected by the fibres and indirectly evaluate coincidences and
singles. In the second approach, we calculate the PDC wave function over the spatial distribution
of intensities as defined by single-mode fibres, directly providing coincidences and associated
single counts. The main difference between the two approaches relates to the fibre mode selection
and the associated detection process. The first assumes that the fibre plus the detector is a system
capable of distinguishing single-mode fields, and the calculation is therefore performed in terms
of fields rather than intensities. The second approach assumes that the fibres select the mode and
the detectors measure the associated intensity.
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Figure 1. PDC was generated in non-linear crystals of length L and by a pump
beam with a gaussian profile and collected into single-mode optical fibres as
imaged by a lens.

2.1. PDC single-mode field-based collection efficiency

In the field-based approach, the first step is to calculate the two-photon PDC field [26] given by

A12(r1, r2, t1, t2) = 〈0|Ê(+)s (r1, t1)Ê
(+)
i (r2, t2)|ψ〉, (1)

where |0〉 is the vacuum state and |ψ〉 is the two-photon wavefunction, written as

|ψ〉 =
∫

d3r1 d3r2 dt1 dt2 �̃(r1, r2, t1, t2)|1r2,t2〉|1r1,t1〉, (2)

where r1,2 describes the positions of the two photons at time t1,2, and �̃(r1, r2, t1, t2) is the
phase-matching function. The fields

Ê
(+)
s,i (r1,2, t1,2) = NE

∫
d3ks,i dωs,i âks,i,ωs,iexp[i(ks,i · r1,2 − ωs,it1,2)] (3)

are the positive-frequency portions of the electric field operator evaluated at positions rj and
times tj. NE is a normalization factor and âks,i,ωs,i is the photon annihilation operator. To
determine the collection efficiency, we write A12 as a coherent superposition of guided modes
ϕ∗
lm(x, y) in the fibre, as suggested in [23]:

A12(r1, r2, t1, t2) =
∑
l′m′,lm

A12
l′m′,lm(z1, z2, t1, t2)ϕ

∗
l′m′(x1, y1)ϕ

∗
lm(x2, y2). (4)

The field-based collection efficiency can then be written as

χ12 = C12√C1C2
, (5)

where C12 is the fractional power [27] of the biphoton field coupled with the two single-mode
fibres, i.e. the overlap between the PDC field and both collection modes. Similarly, C1 and C2
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are the fractional powers of the biphoton field coupled with each single-mode fibre, again the
overlap between the biphoton field and each collection mode:

C12 =
∫

dz1 dt1 dz2 dt2

×
∣∣∣∣∫ dx1 dy1 dx2 dy2A12(r1, t1, r2, t2)ϕ

∗
l′m′(x1, y1)ϕ

∗
lm(x2, y2)

∣∣∣∣2 ,
C1 =

∫
dz1 dt1 dt2 d3r2

∣∣∣∣∫ dx1 dy1A12(r1, t1, r2, t2)ϕ
∗
l′m′(x1, y1)

∣∣∣∣2 ,
C2 =

∫
dz2 dt2 dt1 d3r1

∣∣∣∣∫ dx2 dy2A12(r1, t1, r2, t2)ϕ
∗
l′m′(x2, y2)

∣∣∣∣2 .
(6)

This approach for obtaining the efficiency χ12 is similar to classical photonics theory. However,
the same result can obtained by a quantum mechanical approach with projectors given by

P̂
(j)

l,m = |1(j)lm 〉〈1(j)lm |, (7)

where

|1(j)lm 〉 =
∫

d2ρj ϕlm(ρj)|1ρj〉 (8)

with j = 1, 2. The coincidences can then be calculated by projecting the wavefunction over
two single-mode fibres:

C12 ∝ Tr[|ψ〉〈ψ|P̂ (1)lm P̂ (2)l′m′] (9)

and the singles are given by

Cj ∝ Tr[|ψ〉〈ψ|P̂ (j)lm ]. (10)

2.2. PDC single-mode intensity-based collection efficiency

In the intensity-based approach the projectors representing the spatial distribution of a single-
mode fibre are given by

P̂j =
∫

d3rj dtj Ij(rj, tj)|1rj,tj〉〈1rj,tj |, (11)

with j = 1, 2. Ij(rj, tj) are the intensity profiles of the single-mode spatial distribution of the
fields. This approach is similar to the approach in [25], which considers conditionally prepared
photon states. Then, the coincidences calculated by projecting the wavefunction over two single-
mode fibres are

C12 = Tr[|ψ〉〈ψ|P̂1P̂2] =
∫

d3r1 d3r2 dt1 dt2 |�̃(r1, r2, t1, t2)|2I1(r1, t1)I2(r2, t2), (12)
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and the singles are given by

Sj = Tr[|ψ〉〈ψ|P̂ j] =
∫

d3r1 d3r2 dt1 dt2 |�̃(r1, r2, t1, t2)|2Ij(rj, tj). (13)

The single-mode intensity-based collection efficiency is then defined by

η12 = C12√
S1S2

. (14)

3. Calculation of the field-based collection efficiency

The two-photon state at the output surface of a PDC crystal, oriented with its face perpendicular
to the z-axis, is given by [26]

|ψ〉 =
∫

d3ks dωs d3ki dωi �(ks, ki, ωi, ωs)|1ks,ωs〉|1ki,ωi〉, (15)

where �(ks, ki, ωi, ωs) is given by

�(ks, ki, ωi, ωs) = N

∫
d3kp dωp

∫
S

dx dy
∫ 0

−L
dz Ẽp(qp)e

i(�kxx+�kyy+�kzz)

× δ(ωs + ωi − ωp)δ(ωp −
p)

× δ

kp · pz −
√(

n(
p)
p

c

)2

− q2
p



× δ

ks · sz −
√(

n(ωs)ωs

c

)2

− q2
s



× δ

ki · iz −
√(

n(ωi)ωi

c

)2

− q2
i

 , (16)

where S is the cross-sectional area of the crystal illuminated by the pump, N the normalization
factor andL the length of the crystal. The subscripts s, i andp indicate the signal, idler and pump,
respectively. We denote the crystal axes in the lab frame by cx, cy and cz, with the pump beam
propagating along cz. Because the signal and idler wavevectors do not generally point along the
crystal axes and also because of beam walk-off, we identify the directions of the pump, signal
and idler Poynting vectors as pz, sz and iz and their transverse components as px,y, sx,y and ix,y.
Using the above notation, we evaluate �kx,y,z. Given that �kx,y,z = (kp − ks − ki) · cx,y,z, we
write�kx,y,z in terms of the pump, signal and idler Poynting vectors. The longitudinal component
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of the pump Poynting vector is

kp · pz =
√(

n(
p)
p

c

)2

− q2
p, (17)

where qp is the transverse component of the pump k-vector and c is the speed of light.
Analogous expressions give the signal and idler longitudinal components.

We now make some approximations to evaluate �kx,y,z. First, we assume that the pump,
signal and idler have narrow transverse angular distributions, so that we can adopt the paraxial
approximation. We also rewrite the longitudinal k-vector components by expanding the index
of refraction np,s,i(ωp,s,i, φ) around the central frequencies (
s,i), and around the phase-
matching angle φo. This last approximation holds only in cases where the considered field is
an extraordinary wave (this, of course, depends on the type of phase-matching adopted, namely
type I or II). In all cases, we limit our calculation to the first perturbative order. We also assume
small non-collinearity and small walk-off angles. When these two approximations hold, we can
expand the sine and cosine terms, limited to first order. Finally, we write the overall�kx,y,z terms
as (see the appendix for the explicit calculation)

�kx = qp · px − qs · sx − qi · ix − γsKs,

�ky = qp · py − qs · sy − qi · iy − θiKi − θsKs,

�kz =Dν − γp(qp · px − qs · sx − qi · ix)− γsqs · sx

+ (Np − Ns)
qp · py

Kp

+ θsqs · sy − θiqi · iy,

(18)

where θi,s are the emission angles of the idler and signal photons,Ki,s,p = ni,s,p(
i,s,p, φ)
i,s,p/c

describe the directions of the central intensities of the wavevectors and γs,p are the signal and
pump walk-off angles, respectively. The terms

Np = 
p

c

dnp(
p, φ)

dφ

∣∣∣∣
φo

and Ns = 
s

c

dns(
s, φ)

dφ

∣∣∣∣
φo+γp

account for the effects on the refractive indexes of the pump and the signal due to the pump
angular spread, which is responsible for a small deviation from the phase-matching angle φo.
The other terms are defined as

D = − dni(ωi)ωi/c

dωi

∣∣∣∣

i

+
dns(ωs, φ)ωs/c

dωs

∣∣∣∣

s

and ν = ωs −
s = 
i − ωi.

Note that Ns = γs = 0 for type I phase-matching. The first term in the expression for �kz
accounts for the differential phase velocity between the signal and idler photons in the crystal,
which is zero for type I degenerate; the second and third terms are responsible for the pump
and signal walk-offs, respectively. (The signal and idler walk-offs are generally equal to zero for
type I.) The fourth term accounts for the pump transverse distribution as an angular spread
around a principal direction, and the last two terms are associated with the non-collinear
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emission of the photons. We note that, in the type I degenerate case, these last two terms
cancel out.

The pump beam transverse field distribution is defined via the Fourier transform

Ep(ρ) = 1

2π

∫
d2qp Ẽp(qp)e

iqp·ρ. (19)

We take this transverse distribution to be Gaussian having a waist of wp at the crystal, and
assume that the transverse crystal size is large relative to the pump beam; therefore we can
take the cross-section S to be infinite. Moreover, we assume that the pump beam has a
narrow angular spectrum (transverse wavevector distribution) and the signal and idler are
observed only at points close to their central directions. The central frequencies are 
s,i. We
also assume that the pump propagates with negligible diffraction inside the crystal, so thatEp(ρ)
is independent of z. With these approximations, we calculate the valid ranges of wp, L and
wo, which is the width of collection fibre mode as imaged at the crystal. In particular,
L � Kpw

2
p/2 to have negligible diffraction of the pump in the crystal. We can neglect second-

order terms in the transverse wavevector component in equations (18) whenwo,p � (Ks,iγp,s)
−1

and, in the non-collinear case, when wo,p � (Ks,iθs,i)
−1.

Using these approximations, we rewrite equation (15) as

|ψ〉 = N

∫ 0

−L
dz
∫

d2qs d2qi d
2qp dν Ẽp(qp)e

i�kzzδ(�kx)δ(�ky)|1ks,ωs〉|1ki,ωi〉. (20)

To evaluate C12 and S1,2, we rewrite the state |ψ〉 in terms of |1r1,t1〉|1r2,t2〉 by using

|1ks,ωs〉 = 1

(2π)2

∫
d3r1 dt1 ei(ks·r1−ωst1)|1r1,t1〉 (21)

and

|1ki,ωi〉 = 1

(2π)2

∫
d3r2 dt2 ei(ki·r2−ωit2)|1r2,t2〉. (22)

Thus the �(ks, ki, ωi, ωs) in equation (16) becomes, in the new basis, its Fourier transform
�̃(r1, r2, t1, t2), as indicated formally in equation (2) and calculated at the output surface of the
crystal (z1,2 = 0). By first performing the Fourier transforms and leaving the z integration for
performing last, we obtain

�̃(r1, r2, t1, t2) = N1 exp

[
− i(Kiθ

2
i +Ks(θsθi − γsγp))τ

D

]
exp

[
−(Np − Ns)

2τ2

D2w2
pKp

]

× exp

[
2(Np − Ns)τ(y1 + θiτ

D
)

Dw2
pKp

]
exp

[
−x

2
1 + (y1 + θiτ

D
)2

w2
p

]
�DL(τ)

× δ

(
x1 − x2 − γsτ

D

)
δ

(
y1 − y2 +

(θi + θs)τ

D

)
δ(z1)δ(z2), (23)
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where τ = t1 − t2 and �DL(τ) = 1 for 0 � τ � DL and 0 elsewhere. To guarantee that
the biphoton state is properly normalized, the factor N1 is determined from the condition∫

d3r1 d3r2 dt1 dt2 |�̃(r1, r2, t1, t2)|2 = 1, yielding N1 = wp/4π2
√
DL. To calculate the field-

based collection efficiency, we assume that the guided mode is a Gaussian field at the crystal
output surface, defined by

ϕ∗
10(xj, yj) =

√
2

π

1

wo
exp

[
−(x

2
j + y2

j )

w2
o

]
. (24)

The imaging optic is arranged to place the collection beam waist wo at the crystal. The intensity
of the collection modes is normalized by setting

∫
[ϕ∗

10]2 dx dy = 1, which yields the coef-
ficient in equation (24). The biphoton field is calculated using equations (1), (3) and (23), and
the operator

âks,i,ωs,i = 1

(2π)2

∫
d3r1,2 dt1,2 âr1,2,t1,2 e−iks,i·r1,2+ωs,it1,2 (25)

to obtain

A12(r1, r2, t1, t2) ∝ N2
E�̃(r1, r2, t1, t2). (26)

The single-mode field-based collection efficiency is then given by

χ12 = F
4wow2

p

√
(w2

o + w2
p)(−Np + Ns +Kpθi)

√
K2
pγ

2
s + (Np − Ns +Kpθs)2√

(w2
o + 2w2

p)
3B

, (27)

with

F =
Erf

 L
√
B

Kpwo

√
w2
o/2 + w2

p


√√√√√Erf

√
2L
(−Np + Ns +Kpθi)

Kp

√
w2
o + w2

p

Erf

√
2L

√
K2
pγ

2
s + (Np − Ns +Kpθs)2

Kp

√
w2
o + w2

p


, (28)

and B = (2N 2
p + 2N 2

s − 2Np(2Ns +Kp(θi − θs)) + 2KpNs(θi − θs) +K2
p(γ

2
s + θ2

i + θ2
s ))w

2
o +

K2
p(γ

2
s + (θi + θs)2)w2

p. In the thin crystal limit, this reduces to

χ12 = 4w2
p(w

2
o + w2

p)

(w2
o + 2w2

p)
2

(29)

as first calculated in [23, 24]. In this approach, the fibres act to project the photons state onto a
specific propagation mode both in amplitude and phase, as indicated in equations (7) and (8).
The spatial coherence of the single guided modes in the signal and idler arms should ultimately
match the overall spatial coherence of the two-photon states.
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4. Calculation of the single-mode intensity-based collection efficiency

To calculate the single-mode intensity-based collection efficiency, we assume that the projectors
P̂ j, representing the fibre modes propagated back to the output surface of the crystal, are
completely determined by the functions

Ij(rj) = e−2(x2
j+y2

j )/w
2
j δ(zj). (30)

(Note that in this approach, the intensity projection operator has a maximum of 1 because of
its probabilistic nature.) Assuming that the conditions detailed following equation (19) are valid
and ws = wi = wo, we calculate the single-mode intensity-based collection efficiency

η12 = F
wo

√
(w2

o + w2
p)(−Np + Ns +Kpθi)

√
K2
pγ

2
s + (Np − Ns +Kpθs)2√

(w2
o + 2w2

p)B
. (31)

In the thin crystal limit, η12 becomes

η12 = w2
o + w2

p

(w2
o + 2w2

p)
. (32)

Note that there are several approximations other than L → 0 that lead to equation (32). For
example, the assumptions following equation (19) preclude the case of an arbitrarily small pump
waist at the crystal. The collection mode waist is also restricted to modes that can be created by
finite lenses that image fibres at a finite distance from the crystal.

In the intensity-based approach presented in this section, the collection mode can be
considered as spatially filtering the multi-mode input light. Thus it is probably better suited
for modelling the multi-mode fibre collection. As the next section demonstrates, the predic-
tions made by this model yield different results than the field-based model. The intensity-based
model predicts that, for a fixed pump waist, the maximum collection efficiency is obtained when
the fibre-defined collection mode (at the crystal) is large, i.e. all the pumped crystal volume is
in a region of unit collection efficiency of the fibre/spatial filter system. With the field-based
approach, the optics set-up of figure 1 can be envisioned in an unfolded geometric arrangement
[28], where one of the fibres acts as a single-mode source propagating back through a spatial
filter (in this case, the pumped crystal volume) to the other fibre. The maximum collection is
achieved with a large pump waist, with respect to the collection beam waist at the crystal. If the
pump waist is smaller than the fibre-defined collection beam waist, the collection efficiency is
decreased. It is probable that the field-based approach gives the best answers for a single-mode
fibre. However, moving to multi-mode fibres, the result should approach the intensity-based
model, i.e. corresponding to a statistical optics physical description.

5. Discussion of results

The most immediately obvious result in this paper is that in the thin crystal limit, η12 and χ12

provide totally different predictions. Figure 2 shows the field- and intensity-based collection
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Figure 2. Field-based (——) and intensity-based collection efficiencies (· · · · · ·)
in the thin crystal limit versus wo for fixed values of wp.

efficiencies compared with the collection mode waists for fixed values of pump waist. When the
collection waist is much greater than the pump waist, η12 asymptotically tends to 1, whereas χ12

tends to 0; in the opposite condition (wp � wo), η12 → 1
2 and χ12 → 1. However, the thin crystal

approximation is far from valid unless the crystal is shorter than 0.1 mm for these collection beam
diameters. In practical cases, crystal lengths range from 0.5 to 20 mm. This is one of the prime
motivations for this work.

To illustrate a practical lab set-up, we consider first a BBO crystal with type I and II phase-
matchings pumped at 458 nm and then look at down-conversion at the degenerate wavelength
(916 nm). For both types I and II, we describe the collinear and non-collinear cases with
θs = θi ∼= 1.5◦. To make valid predictions, we must ensure that the combination of L and wp
satisfy the assumptions made in deriving the expression. Figure 3 shows a graph of valid parameter
combinations, generally putting a lower limit on the size of the pump waist.

Figure 4 plots both η12 andχ12 versuswo for fixedwp = 0.1 mm and crystal lengths ofL = 1
and 10 mm, with their limit values referring to the thin crystal approximation. Cases of collinear
and non-collinear configurations for both type I (figure 4, upper panel) and type II (figure 4, lower
panel) phase-matchings are plotted. Again, note the different behaviours of η12 and χ12. When a
crystal longer than 0.1 mm is used, both η12 and χ12 can be significantly decreased if the pump
and collection waists are not properly matched. The way to match the waist for the optimum
collection efficiency is different for η12 and χ12. In particular, η12 can be optimized for a long
crystal by increasing the collection waist at the crystal. The opposite holds for χ12. Moreover,
for η12 in the case of type I phase-matching (figure 4, upper panel), we observe that the collinear
configuration always guarantees a better coupling, whereas this is not the case with type II. This
can be observed for η12 evaluated at L = 10 mm in figure 4 (lower panel): for wo < 0.5 mm, the
non-collinear configuration appears to be clearly more efficient compared with the collinear one.
We can justify this behaviour, because in type II collinear phase-matching, the walk-off angle of
the signal is less compared with that in the non-collinear configuration.

New Journal of Physics 6 (2004) 00 (http://www.njp.org/)

http://www.njp.org/


12 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0

5

10

15

0 0.1 0.2 0.3

Crystal
Length
(mm)

wp (mm)

Figure 3. A plot of the range of values for L and wp to guarantee the validity of
the final formula (white region). Calculations are within the conditions of
wo � wp (a trivial, convenient experimental choice) and non-collinear phase-
matching for the angles and frequencies given in section 5.

Figure 5 shows effects of the crystal length on η12 and χ12 with wp = wo = 0.2 and
0.4 mm. We observe that, apart from their different values, η12 and χ12 present completely
analogous dependences on the length of the crystal: all the chosen configurations, namely
types I and II, collinear and non-collinear, converge to the thin crystal curve for very
short lengths, whereas for long crystals, they reach different lower asymptotic values depending
on the associated waist configurations. In fact, for L → ∞, the factor F in equation
(28) approaches 1; thus the long crystal asymptotic values can be obtained directly from
equations (31) and (27).

In general, the coupling efficiencies are higher in type I compared with type II, although for
long crystals, there is a noticeable behaviour difference between types I and II. For type I, collinear
geometry yields the best coupling efficiencies, whereas for type II, non-collinear geometry is
best. However, the discrepancy between type II collinear and non-collinear configurations is less
evident for crystals of intermediate length. It is noteworthy to observe that the dependence on
the crystal length is actually re-scalable by scaling the pump and collection waists.

Figure 6 plots χ12 and η12 versuswo andwp for two different lengths of the crystal. For χ12,
we have an optimum match between wo and wp (maximizing collection efficiency) with type II
phase-matching. This is clear from figure 6(b), where the crystal length is 10 mm. For η12, we
did not find a similar behaviour even for a wider range of wp and wo.

Because of other effects that can lower the efficiency in practice (such as crystal and optical
losses, detector inefficiencies and so on [29]), it is important to make an experimental test of
the theory that is not sensitive to these extraneous types of losses. With this view, it is best
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Figure 4. Plot of η12 (——) and χ12 (- - - -) versus wo for fixed wp = 100µm
andL = 1 and 10 mm. We simulated the case of type I (upper panel) for collinear
and non-collinear conditions (with dots) with γp = 3.5◦ and Np = −1.4µm−1.
We simulated the case of type II (lower panel) for collinear and non-collinear
conditions (with dots) with γp = 4.28◦, γs = 4.07◦, Np = −1.67µm−1 andNs =
−0.77µm−1.

to choose a configuration where the two models have opposite dependences on adjustable
experimental parameters. For example, one could measure the collection efficiency for fixed
crystal lengths, while varying either the pump waist or the collection waist, such as in the central
value range of figure 4. A type II configuration could be useful to outline further the differences,
as demonstrated in figure 6, where an optimum pump-collection waist is predicted only in
one case.
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Figure 5. Plot of η12 (- - - -) and χ12 (——) versus L for fixed wp = wo = 0.2
and 0.4 mm. We simulated the cases of type I (upper panel) and type II (lower
panel). Both non-collinear (as indicated by the curves with dots) and collinear
(curves without dots) PDC output configurations were calculated with all other
parameters the same as in figure 4.

6. Conclusions

We have presented an analytical model to quantify the collection efficiency in terms of
adjustable experimental parameters with the goal of optimizing single-mode collection from
two-photon sources. An alternative scheme is also presented that may have more validity for
multi-mode collection arrangements. Our calculation was performed using generally accepted
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Figure 6. Density plots of χ12 (a, b) and η12 (c, d) versus wo,wp for L = 1 mm
(a, c) and 10 mm (b, d), respectively for type II non-collinear phase-matching.
The lighter area corresponds to higher efficiency.

approximations, such as relying mainly on a finite transverse distribution of the fields involved
and neglecting second-order terms in the components of the transverse-wave vector. These
calculations cover a wide range of experimental configurations and yield two formulae to
quantify the collection efficiencies. We have pointed out the experimental conditions that could
be used to differentiate between the two models.
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Appendix

Here we present the calculations to obtain �kx, �ky and �kz in equations (18). As shown
in figure A.1, we consider a uniaxial negative crystal with a pump beam propagating as an
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Figure A.1. Non-collinear type I phase-matching in uniaxial negative crystals;
see the text for details.

extraordinary ray. Hereinafter, we adopt the crystal directions (cx,y,z) as a co-ordinate system
for subsequent calculations with the pump beam oriented along cz. Because of walk-off, the
direction of propagation of the pump does not coincide with cz, but is deflected by an angle γp.
Therefore its direction of propagation is pz = (sin γp, 0, cos γp)T, and the associated transverse
directions are px = (cos γp, 0,− sin γp)T and py = cy (T stands for transpose). This is simply a
rotation around the direction cy by an angle γp.

We first analyse the case of type I non-collinear PDC, where both signal and idler are
ordinary rays, and we restrict the signal and idler directions to the plane perpendicular to the
principal plane of the crystal (the plane defined by the pump wave vector and the optic axis
of the crystal). Although these geometry restrictions are used to simplify the calculations for
illustrative purposes, they do not affect the overall conclusions. The calculations can be extended
straightforwardly to a general geometry configuration and to type II phase-matching.

We assume also that the signal photons are emitted at an angle θs with respect to the
pump direction as depicted in figure A.1. By performing a rotation of the pump directions
around px by an angle θs, we deduce the direction of propagation of the signal as sz =
(cos θs sin γp, sin θs, cos θs cos γp)T and the associated transverse directions as sx = px and
sy = (− sin θs sin γp, cos θs,− sin θs cos γp). The same holds for the idler (iz is the direction
of propagation, ix and iy are the transverse directions) by simply replacing θs with θi.

For type II non-collinear parametric phase-matching, the idler is an ordinary ray (with the
same considerations above), whereas the signal is an extraordinary ray. This means that the
projection of the signal wavevector along cz is additionally rotated by an angle γs because of
the crystal birefringence. In this case again, by performing this extra rotation, the direction of
propagation of the signal is evaluated as

sz = (cos θs cos γp sin γs + cos θs sin γp cos γs, sin θs,

cos θs cos γp cos γs − cos θs sin γp sin γs)
T (A.1)
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with the associated transverse directions

sx = (cos γp cos γs − sin γp sin γs, 0,−cos γp sin γs − sin γp cos γs)
T,

sy = (− sin θs cos γp sin γs − sin θs sin γp cos γs, cos θs,

− sin θs cos γp cos γs + sin θs sin γp sin γs)
T.

Here we describe the approximations leading to the final equations (18). We apply to
equation (17) the paraxial approximation along the longitudinal directions of the pump, signal
and idler fields. We assume that the signal and idler waves in these directions are narrow band
and reached a peak around the frequencies 
s and 
i respectively and the pump beam is in a
single-frequency mode (
p) (this, of course, is wrong for a pulsed pump beam).

As other authors have done, we account for dependence of the extraordinary wave’s index of
refraction on the angle between the optic axis and the component of the direction of propagation
of the wave in the principal plane of the crystal (called phase-matching angle). This means
that, because the angular spread of the pump beam gives a phase-matching angle not uniquely
determined, we have to evaluate this dependence by expanding the indexes of refraction around
the central phase-matching angle, specifically φo and φo + γp for the pump and the signal (when
we deal with type II), respectively. With this assumption, equation (17) becomes the following
for each field:

kp · pz =Kp

(
1 − q2

p

2K2
p

)
+ (φ − φo)Np + · · · ,

ks · sz =Ks

(
1 − q2

s

2K2
s

)
+

dns(ωs, φ)ωs/c

dωs

∣∣∣∣

s

(ωs −
s)

+
1

2

d2ns(ωs, φ)ωs/c

dω2
s

∣∣∣∣

s

(ωs −
s)
2 + (φ − φo − γp)Ns + · · · ,

ki · iz = Ki

(
1 − q2

i

2K2
i

)
+

dni(ωi)ωi/c

dωi

∣∣∣∣

i

(ωi −
i)

+
1

2

d2ni(ωi)ωi/c

dω2
i

∣∣∣∣

i

(ωi −
i)
2 + · · · ,

(A.2)

where

Np = 
p

c

dnp(
p, φ)

dφ

∣∣∣∣
φo

and Ns = 
s

c

dns(
s, φ)

dφ

∣∣∣∣
φo+γp

.

We limited our calculation to the first perturbative order for all the variables involved, i.e.
for the frequency, the transverse wavevector components and the angles. We observe that we
can go back to type I phase-matching by setting Ns = γs = 0. Furthermore, we can approximate
φ − φo − γp  φ − φo  qp · py/Kp.
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Finally, we use the sine and cosine terms in the p, s and i component directions written
in the crystal reference system to their first perturbative order, because of the assumed
small emission and birefringence angles (about a few degrees). We then calculate �kx,y,z =
(kp − ks − ki) · cx,y,z, obtaining equations (18) directly.
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